000 | 01552nam a22002057a 4500 | ||
---|---|---|---|
003 | OSt | ||
005 | 20241126151253.0 | ||
008 | 190412b ||||| |||| 00| 0 eng d | ||
020 | _a9781475713848 | ||
040 |
_cTata Book House _aICTS-TIFR |
||
050 | _aQA252.3 | ||
100 | _aVictor G. Kac | ||
245 | _aInfinite dimensional lie algebras | ||
260 |
_aNew York: _bSpringer, _c[c1983] |
||
300 | _a245 p | ||
490 |
_a Progress in Mathematics _vVol. 44 |
||
505 | _a1. The invariant bilinear form and the generalized Casimir operator 2. Integrable representations and the Weyl group of a Kac-Moody algebra 3. Some properties of generalized Cartan matrices 4. Real and imaginary roots 5. Affine Lie algebras: the normalized invariant bilinear form, the root system and the Weyl group 6. Affine Lie algebras: the realization (case k=1) 7. Affine Lie algebras: the realization (case k=2 or 3). Application to the classification of finite order automorphisms 8. Highest weight modules over the Lie algebra g(A) 9. Integrable highest weight modules: the character formula 10. Integrable highest weight modules: the weight system, the contravariant Hermitian form and the restriction problem 11. Integrable highest weight modules over affine Lie algebras. Application to η-function identities 12. Affine Lie algebras, theta functions and modular forms 13. The principal realization of the basic representation. Application to the KdV-type hierarchies of non-linear partial differential equations | ||
650 | _aMathematics | ||
942 |
_2lcc _cBK |
||
999 |
_c2616 _d2616 |