000 | 01348nam a22002057a 4500 | ||
---|---|---|---|
003 | OSt | ||
005 | 20240923145452.0 | ||
008 | 190408b ||||| |||| 00| 0 eng d | ||
020 | _a9783540279495 | ||
040 |
_cTata Book House _aICTS-TIFR |
||
050 | _aQA169 | ||
100 | _aKashiwara Masaki | ||
245 | _aCategories and sheaves | ||
260 |
_aNew York: _bSpringer, _c[c2006] |
||
300 | _a497 p | ||
505 | _aIntroduction 1. The Language of Categories 2. Limits 3. Filtrant Limits 4. Tensor Categories 5. Generators and Representability 6. Indization of Categories 7. Localization 8. Additive and Abelian Categories 9. π-accessible Objects and F-injective Objects 10. Triangulated Categories 11. Complexes in Additive Categories 12. Complexes in Abelian Categories 13. Derived Categories 14. Unbounded Derived Categories 15. Indization and Derivation of Abelian Categories 16. Grothendieck Topologies 17. Sheaves on Grothendieck Topologiesc 18. Abelian Sheaves 19. Stacks and Twisted Sheaves | ||
520 | _aThis book covers categories, homological algebra and sheaves in a systematic and exhaustive manner starting from scratch, and continues with full proofs to an exposition of the most recent results in the literature, and sometimes beyond.--- summary provided by publisher | ||
700 | _aSchapira Pierre | ||
942 |
_2lcc _cBK |
||
999 |
_c2611 _d2611 |