000 | 01536nam a22002297a 4500 | ||
---|---|---|---|
003 | OSt | ||
005 | 20240923122142.0 | ||
008 | 190408b ||||| |||| 00| 0 eng d | ||
020 | _a9780387953854 | ||
040 |
_cTata Book House _aICTS-TIFR |
||
050 | _aQA154.3 | ||
100 | _aSerge Lang | ||
245 | _aAlgebra | ||
250 | _a3rd rev. ed. | ||
260 |
_aNew York: _bSpringer, _c[c2002] |
||
300 | _a914 p | ||
490 |
_aGraduate Texts in Mathematics _vVolume 211 |
||
505 | _aPart I- The Basic Objects of Algebra 1. Groups 2. Rings 3. Modules 4. Polynomials Part II- Algebraic Equations 5. Algebraic Extensions 6. Galois Theory 7. Extensions of Rings 8. Transcendental Extensions 9. Algebraic Spaces 10. Noetherian Rings and Modules 11. Real Fields 12. Absolute Values Part III- Linear Algebra and Representations 13. Matrices and Linear Maps 14. Representation of One Endomorphism 15. Structure of Bilinear Forms 16. The Tensor Product 17. Semisimplicity 18. Representations of Finite Groups 19. The Alternating Product Part IV- Homological Algebra 20. General Homology Theory 21. Finite Free Resolutions | ||
520 | _aThis book is intended as a basic text for a one-year course in Algebra at the graduate level, or as a useful reference for mathematicians and professionals who use higher-level algebra. This book successfully addresses all of the basic concepts of algebra. -- summary provided by publisher | ||
856 | _uhttps://link.springer.com/book/10.1007/978-1-4613-0041-0 | ||
942 |
_2lcc _cBK |
||
999 |
_c2608 _d2608 |