000 01536nam a22002297a 4500
003 OSt
005 20240923122142.0
008 190408b ||||| |||| 00| 0 eng d
020 _a9780387953854
040 _cTata Book House
_aICTS-TIFR
050 _aQA154.3
100 _aSerge Lang
245 _aAlgebra
250 _a3rd rev. ed.
260 _aNew York:
_bSpringer,
_c[c2002]
300 _a914 p
490 _aGraduate Texts in Mathematics
_vVolume 211
505 _aPart I- The Basic Objects of Algebra 1. Groups 2. Rings 3. Modules 4. Polynomials Part II- Algebraic Equations 5. Algebraic Extensions 6. Galois Theory 7. Extensions of Rings 8. Transcendental Extensions 9. Algebraic Spaces 10. Noetherian Rings and Modules 11. Real Fields 12. Absolute Values Part III- Linear Algebra and Representations 13. Matrices and Linear Maps 14. Representation of One Endomorphism 15. Structure of Bilinear Forms 16. The Tensor Product 17. Semisimplicity 18. Representations of Finite Groups 19. The Alternating Product Part IV- Homological Algebra 20. General Homology Theory 21. Finite Free Resolutions
520 _aThis book is intended as a basic text for a one-year course in Algebra at the graduate level, or as a useful reference for mathematicians and professionals who use higher-level algebra. This book successfully addresses all of the basic concepts of algebra. -- summary provided by publisher
856 _uhttps://link.springer.com/book/10.1007/978-1-4613-0041-0
942 _2lcc
_cBK
999 _c2608
_d2608