Emmy Noether's wonderful theorem (Record no. 3177)

000 -LEADER
fixed length control field 01563nam a22001937a 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240926145733.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 220915b |||||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780801896941
040 ## - CATALOGING SOURCE
Original cataloging agency ICTS-TIFR
050 ## - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA174.17.S9
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Neuenschwander, Dwight E.
245 ## - TITLE STATEMENT
Title Emmy Noether's wonderful theorem
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Baltimore, Md.:
Name of publisher, distributor, etc. Johns Hopkins University Press,
Date of publication, distribution, etc. [c2011]
300 ## - Physical Description
Pages: 243 p.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note 1 PROLOGUE;<br/><br/>Part I- WHEN FUNCTIONALS ARE EXTREMAL;<br/>2 Functionals;<br/>3 Extremals;<br/><br/>Part II- When functionals are invariant;<br/>4 Invariance;<br/>5 Emmy Noether's Elegant Theorem;<br/><br/>Part III- THE INVARIANCE OF FIELDS;<br/>6 Fields and Noether's theorem;<br/>7 Gauge Invariance as a dynamical principle;<br/><br/>Part IV- POST-NOETHER INVARIANCE;<br/>8 Invariance in phase space;<br/>9 The action as a generator;<br/><br/>APPENDIXES;<br/>A. Scalars, vectors, tensors, and coordinate transformations;<br/>B. Special relativity;<br/>C. Equations of motion in quantum mechanics;<br/>D. Legendre transformations and conjugate variables;<br/>E. The Jacobian;<br/>Bibliography;<br/>Index
520 ## - SUMMARY, ETC.
Summary, etc. "A beautiful piece of mathematics, Noether's Theorem touches on every aspect of physics. Emmy Noether proved her theorem in 1915 and published it in 1918. This profound concept demonstrates the connection between conservation laws and symmetries. For instance, the theorem shows that a system invariant under translations of time, space, or rotation will obey the laws of conservation of energy, linear momentum, or angular momentum, respectively.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type Book
Holdings
Withdrawn status Lost status Damaged status Not for loan Collection code Home library Shelving location Date acquired Inventory number Full call number Accession No. Copy number Koha item type
        Mathematics ICTS Rack No 10 09/15/2022 Gratis QA174.17.S9 02549 1 Book