000 -LEADER |
fixed length control field |
01940nmm a2200181Ia 4500 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
230301s9999||||xx |||||||||||||||||und|| |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781470433246 (online) |
245 #0 - TITLE STATEMENT |
Title |
Twelve papers in logic and algebra / |
Statement of responsibility, etc. |
by A. F. Lavrik ... [et al.]. |
Medium |
Series 2, volume 113 |
260 ## - PUBLICATION, DISTRIBUTION, ETC. |
Place of publication, distribution, etc. |
Providence : |
Name of publisher, distributor, etc. |
American Mathematical Society, |
Date of publication, distribution, etc. |
1979 |
300 ## - PHYSICAL DESCRIPTION |
Extent |
1 online resource (v, 250 p.) |
490 ## - SERIES STATEMENT |
Series statement |
American Mathematical Society Translations: Series 2, |
500 ## - GENERAL NOTE |
General note |
Translated from Russian. |
504 ## - BIBLIOGRAPHY, ETC. NOTE |
Bibliography, etc. note |
Includes bibliographical references.;Bibliography: p. |
505 ## - FORMATTED CONTENTS NOTE |
Title |
Properties of some subsystems of classical and intuitionistic propositional calculi /; On a theorem in additive number theory /; On the theory of distribution of primes based on I. M. Vinogradov's method of trigonometric sums /; A simplification of A. Selberg's elementary proof of the asymptotic law of distribution of prime numbers /; On the theory of inverse semigroups and generalized groups /; Lectures on semigroups of transformations /; Irreducible representations of the group |
-- |
U(n) |
-- |
of class I relative to |
-- |
U(n - 1) |
-- |
/; Irreducible representations of the group |
-- |
U(n) |
-- |
of class I relative to |
-- |
U(n - 1) |
-- |
/; Special functions connected with representations of the group |
-- |
U(n) |
-- |
of class I relative to |
-- |
U(n - 1)\ (n\ge 3) |
-- |
/; Irreducible representations of polycyclic groups over an absolute algebraic field of prime characteristic /; On torsion-free groups whose irreducible representations over some field are all finite-dimensional /; Symmetric groupoids / |
Statement of responsibility |
M. I. Semenenko; A. F. Lavrik; A. F. Lavrik; A. G. Postnikov and N. P. Romanov; Boris M. [B. M. Sain] Schein; B. M. [Sain] Schein; R. L. Sapiro; N. Ja. Vilenkin and R. L. Sapiro; R. L. Sapiro; E. M. [Levics] Levic; E. M. [Levics] Levic; A. I. Malcev |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name entry element |
Logic, Symbolic and mathematicalAlgebra |
700 ## - ADDED ENTRY--PERSONAL NAME |
Personal name |
Lavrik, A. F. |
856 ## - ELECTRONIC LOCATION AND ACCESS |
Uniform Resource Identifier |
<a href="http://www.ams.org/trans2/113">http://www.ams.org/trans2/113</a> |