Infinite dimensional lie algebras (Record no. 2616)

000 -LEADER
fixed length control field 01552nam a22002057a 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20241126151253.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 190412b ||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781475713848
040 ## - CATALOGING SOURCE
Transcribing agency Tata Book House
Original cataloging agency ICTS-TIFR
050 ## - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA252.3
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Victor G. Kac
245 ## - TITLE STATEMENT
Title Infinite dimensional lie algebras
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. New York:
Name of publisher, distributor, etc. Springer,
Date of publication, distribution, etc. [c1983]
300 ## - Physical Description
Pages: 245 p
490 ## - SERIES STATEMENT
Series statement Progress in Mathematics
Volume/sequential designation Vol. 44
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note 1. The invariant bilinear form and the generalized Casimir operator<br/>2. Integrable representations and the Weyl group of a Kac-Moody algebra<br/>3. Some properties of generalized Cartan matrices<br/>4. Real and imaginary roots<br/>5. Affine Lie algebras: the normalized invariant bilinear form, the root system and the Weyl group<br/>6. Affine Lie algebras: the realization (case k=1)<br/>7. Affine Lie algebras: the realization (case k=2 or 3). Application to the classification of finite order automorphisms<br/>8. Highest weight modules over the Lie algebra g(A)<br/>9. Integrable highest weight modules: the character formula<br/>10. Integrable highest weight modules: the weight system, the contravariant Hermitian form and the restriction problem<br/>11. Integrable highest weight modules over affine Lie algebras. Application to η-function identities<br/>12. Affine Lie algebras, theta functions and modular forms<br/>13. The principal realization of the basic representation. Application to the KdV-type hierarchies of non-linear partial differential equations
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Mathematics
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type Book
Holdings
Withdrawn status Lost status Damaged status Not for loan Collection code Home library Shelving location Date acquired Full call number Accession No. Koha item type
          ICTS Rack No 5 04/12/2019 QA252.3 01953 Book