Mathematical methods in quantum mechanics (Record no. 1687)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 01797nam a2200217Ia 4500 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | OSt |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20240923125903.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 180205s9999 xx 000 0 und d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 978-1-4704-1704-8 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | ICTS-TIFR |
050 ## - LIBRARY OF CONGRESS CALL NUMBER | |
Classification number | QA154.3 |
100 ## - MAIN ENTRY--PERSONAL NAME | |
Personal name | Gerald Teschl |
245 ## - TITLE STATEMENT | |
Title | Mathematical methods in quantum mechanics |
Remainder of title | : with applications to schrödinger operators |
250 ## - EDITION STATEMENT | |
Edition statement | 2nd Ed. |
260 ## - PUBLICATION, DISTRIBUTION, ETC. | |
Name of publisher, distributor, etc. | American Mathematical Society, |
Date of publication, distribution, etc. | [c2014] |
Place of publication, distribution, etc. | Rhode, Island: |
300 ## - Physical Description | |
Pages: | 358 p. |
505 ## - FORMATTED CONTENTS NOTE | |
Formatted contents note | Part 0. Preliminaries<br/>Chapter 0. A first look at Banach and Hilbert spaces<br/><br/>Part 1. Mathematical foundations of quantum mechanics<br/>Chapter 1. Hilbert spaces<br/>Chapter 2. Self-adjointness and spectrum<br/>Chapter 3. The spectral theorem<br/>Chapter 4. Applications of the spectral theorem<br/>Chapter 5. Quantum dynamics<br/>Chapter 6. Perturbation theory for self-adjoint operators<br/><br/>Part 2. Schrödinger operators<br/>Chapter 7. The free Schrödinger operator<br/>Chapter 8. Algebraic methods<br/>Chapter 9. One-dimensional Schrödinger operators<br/>Chapter 10. One-particle Schrödinger operators<br/>Chapter 11. Atomic Schrödinger operators<br/>Chapter 12. Scattering theory<br/><br/>Part 3. Appendix<br/>Appendix A. Almost everything about Lebesgue integration<br/><br/> |
520 ## - SUMMARY, ETC. | |
Summary, etc. | Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrödinger operators. --- summary provided by publisher |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Mathematics |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Source of classification or shelving scheme | |
Koha item type | Book |
Withdrawn status | Lost status | Damaged status | Not for loan | Collection code | Home library | Shelving location | Date acquired | Full call number | Accession No. | Koha item type |
---|---|---|---|---|---|---|---|---|---|---|
ICTS | Rack No 4 | 01/18/2018 | QA154.3 | 00950 | Book |