Mathematical methods in quantum mechanics (Record no. 1687)

000 -LEADER
fixed length control field 01797nam a2200217Ia 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240923125903.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 180205s9999 xx 000 0 und d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 978-1-4704-1704-8
040 ## - CATALOGING SOURCE
Original cataloging agency ICTS-TIFR
050 ## - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA154.3
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Gerald Teschl
245 ## - TITLE STATEMENT
Title Mathematical methods in quantum mechanics
Remainder of title : with applications to schrödinger operators
250 ## - EDITION STATEMENT
Edition statement 2nd Ed.
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Name of publisher, distributor, etc. American Mathematical Society,
Date of publication, distribution, etc. [c2014]
Place of publication, distribution, etc. Rhode, Island:
300 ## - Physical Description
Pages: 358 p.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note Part 0. Preliminaries<br/>Chapter 0. A first look at Banach and Hilbert spaces<br/><br/>Part 1. Mathematical foundations of quantum mechanics<br/>Chapter 1. Hilbert spaces<br/>Chapter 2. Self-adjointness and spectrum<br/>Chapter 3. The spectral theorem<br/>Chapter 4. Applications of the spectral theorem<br/>Chapter 5. Quantum dynamics<br/>Chapter 6. Perturbation theory for self-adjoint operators<br/><br/>Part 2. Schrödinger operators<br/>Chapter 7. The free Schrödinger operator<br/>Chapter 8. Algebraic methods<br/>Chapter 9. One-dimensional Schrödinger operators<br/>Chapter 10. One-particle Schrödinger operators<br/>Chapter 11. Atomic Schrödinger operators<br/>Chapter 12. Scattering theory<br/><br/>Part 3. Appendix<br/>Appendix A. Almost everything about Lebesgue integration<br/><br/>
520 ## - SUMMARY, ETC.
Summary, etc. Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrödinger operators. --- summary provided by publisher
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Mathematics
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type Book
Holdings
Withdrawn status Lost status Damaged status Not for loan Collection code Home library Shelving location Date acquired Full call number Accession No. Koha item type
          ICTS Rack No 4 01/18/2018 QA154.3 00950 Book