Kot, Mark

Elements of mathematical ecology - Cambridge, U.K.: Cambridge University Press, [c2001] - 453 p.

Preface;
Part I. Unstructured Population Models; Section A. Single Species Models: 1. Exponential, logistic and Gompertz growth; 2. Harvest models - bifurcations and breakpoints; 3. Stochastic birth and death processes; 4. Discrete-time models; 5. Delay models; 6. Branching processes; Section B. Interacting Populations: 7. A classical predator-prey model; 8. To cycle or not to cycle; 9. Global bifurcations in predator-prey models; 10. Chemosts models; 11. Discrete-time predator-prey models; 12. Competition models; 13. Mutualism models; Section C. Dynamics of Exploited Populations: 14. Harvest models and optimal control theory;
Part II. Structured Population Models; Section D. Spatially-Structured Models: 15. Spatially-structured models; 16. Spatial steady states: linear problems; 17. Spatial steady states: nonlinear problems; 18. Models of spread; Section E. Age-Structured Models: 19. An overview of linear age-structured models; 20. The Lokta integral equation; 21. The difference equation; 22. The Leslie matrix; 23. The McKendrick-von Foerster PDE; 24. Some simple nonlinear models; Section F. Gender-Structured Models: 25. Two-sex models; References; Index.

Provides an introduction to classical and modern mathematical models, methods, and issues in population ecology. Part one contains simple, unstructured population models that ignore much of the variability found in nature, whilst the second part covers more complex structured population models, including spatially-structured population models, age-structured models, and two-sex models.---provided by publisher

9780521001502

QH352